Biologically-derived Materials for Powering Next Generation Biomedical Electronics

Young Jo Kim, Ph.D.

Assistant Professor Department of Chemical Engineering University of New Hampshire

Implantable biomedical devices

Stimulate deep brain for treating obesity

Monitor pH, T, and glucose

Deliver drugs

Whatteingescouthdibupilenteebeedeveises

Refection risk

Tempoira ingflammation

Costlyfsorigerideployment

Why Edible Electronics?

Most people feel comfortable with taking pills.

- Balance of functional device lifetime with rapid deployment
- Non-invasive, high patient compliance
- Reduced sterilization burden
- Obviate issues associated with chronic implants

Device comparison

	(Prote	Helius us Biomedical)	PillCam (Given Imaging)
Indication			PHILIPS
Function			fer Million
Device lifetime	isks		
Power source	n R	DIGITAL HEALTH	
Logic elements	tio		
Packaging	ten		
Size (D x L)	Re		
Mass			
Retention risk			
			Size of Device 5

www.givenimaging.com

www.proteus.com

Edible Battery

operated by Na⁺ in gastric fluid

- Made of edible materials
- Temporary
- Non-invasive

— Electricallyconductive elastomer

— Anode Activated carbon

Cathode MnO₂

1 cm

Ideal electrodes for edible electronics

- + Robust performance
- + Manufacturing

+ Possible bioabsorption
+ Reduced risk of event
+ Materials of known risk

Inspired by cuttlefish ink

Eumelanins from cuttlefish (sepia officinalis)

- Homogeneous nanostructure (diameter= ~100nm)
- Stable (non-soluble) in aqueous solution
- Hydration dependent electronic-ionic hybrid conductivity

Eumelanins in multi-scale

Length scale (m)

Is eumelanin a viable solution?

Can we tune the capacity?

[P1801-02]

Biologically-derived Materials for powering next generation biomedical electronics kimlab Young Jo Kim, PhD University of CH CU Chemical 👼 Assistant Professor in Chemical Engineering, University of New Hampshire, Durham NH 03824 **New Hampshire** NY Engineering **Background & Motivation** Results Discussion Edible electronics biomedical devices Bio-derived materials for E-storage Topography-controlled biomaterials Melanin Synthesis using tripeptide template Sepia officinalis ÷ 3. Monitor function of cells in GI-tract Monitoring patient Patient wants to monitor physiolog compliance 4 Maas · · Vokage 2. Eat sensor in a pill 2 "Hollus" 50 m 3 (Proteus Biomedical) 4. Relays information on biomarkers to 4 external devices AND DESCRIPTION Scanning Electron Microscope Non-invasi Salar Salar diagnostics and the second Size-dependent gastric emptying in the state PHION state Ballon Stomach 📕 S. Intestine DHICA winder Stations "PilCam" lectrochemical characterization (Given Imaging) Subunite Protomolecules *π-stacking of protomolecules* 1117 x d mm1 Galvanostatic Charge-Discharge * Pellet (0.7 =m) 3 6 9 12 MALLIN IN SALA Emptying time, t (h) Raman spectroscopic characterization -Edible batteries . -76 1 13 26 35 45 Specific capacity (mAhg⁴) [specific capacity (mAhg⁴) Specific Capacity (mAh/g) Can we increase the capacity by controlling the topography? Abulidad Guerdial Davida **Future Outlook** -th- Activated Garbon + J-MnD, -0-LAHO Eumelanins can be used as Na* Powered by aqueous Na* batteries charge storage materials within aqueous environment. Electrically conductive polymer: Controlling topographies using Glucose+Sebacic acid+Cinnamic acid+Ag nanowire peptide template can improve the **Battery electrodes:** charge storage capacities of Activated carbon anode+MnO₂ cathode Specific capacity (mAhg⁴) eumelanins

Thank you

